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Model evaluation and
performance

Whether the behavior of a model matches the behav-
ior of the (real) system–sufficiently well–has always
been a matter of great interest, marked by many
papers over many years, but especially distinctively
and originally by Caswell [7]. The contemporary
phrase for what one seeks to achieve in resolv-
ing this issue is ‘evaluation’ [14]. While it might
seem strange for a label to be of significance, earlier
terms used for describing this process of evaluating
model performance have provoked rather vigorous
debate, within which the word ‘validation’ was first
to be replaced by ‘history matching’ [12], to which
was then added the phrase ‘quality assurance’ [2,
3], but from which debate ‘evaluation’ may even-
tually emerge as the most appropriate descriptor.
The difficulty of finding a label for the process is
as follows. Validation and assurance prejudice the
expectations of the outcome of the procedure towards
only the positive–the modelis valid or its qualityis
assured–whereas evaluation is neutral in what might
be expected of the outcome. Because models of envi-
ronmental systems have become so widespread in
serving purposes affecting a substantially more aware
and engaged audience of (scientifically) lay stake-
holders, words used within the scientific enterprise
can have meanings that are misleading in contexts
outside the confines of the laboratory world. The pub-
lic knows well that supposedly authoritative scientists
can have diametrically opposed views on the bene-
fits of proposed measures to protect the environment.
Proclaiming that a model underpinning development
and assessment of the consequences of these mea-
sures isvalid harks back to an arguably outdated
view of science having a unique access to the singular
truth of the matter. It does not sit comfortably in the
contemporary scene of what some have called post-
normal science [11]; nor is it even what the builders
of mathematical models of environmental systems
themselves believe to be the case [6].

Essence of the Procedure

In lay terms, these are the essential questions one
would like to have answered in seeking to evaluate a
model:

1. Has the model been constructed of approved mat-
erials, i.e. approved constituent hypotheses (in
scientific terms)?

2. Does its behavior approximate well that observed
in respect of the real thing?

3. Does it work, i.e. does it fulfill its designated
task, or serve its intended purpose?

Peer Review

Conventionally, the first of these questions has been
answered through the process of peer review, for
which extensive guidelines are available, for example,
from the US Environmental Protection Agency
[19]. Many definitions of model evaluation, such
as the several entries containing the word ‘valida-
tion’ in the Concise Encyclopedia of Environmental
Systems [20], treat only the quantitative, statistical
aspects of the procedure (and its philosophical basis).
Some things, however, are extremely difficult to deal
with in quantitative terms, most notably the quality of
the constituent hypotheses and the ‘pedigree’ of the
process mechanisms incorporated into the structure
of the model [10]. Whether these many components
of the model have been endorsed by overwhelming
consensus in their choice, or are strongly disputed,
or considered highly speculative, are factors material
to model evaluation, and ones ideally suited to the
process of peer review. Indeed, they are especially
important the more difficult it becomes to evaluate
the model’s overall performance against field data,
and field data (in turn) will be increasingly hard to
acquire for the ever more ambitious models proposed
for addressing the ever more comprehensive analy-
sis of environmental systems, including the adaptive
response of communities and societies to environ-
mental change (as in integrated assessment; see, for
example, [17]).

While peer review of a model will encompass
more than merely an assessment of the quality
of the materials of the model’s construction–for
example, the adequacy of the technical qualifica-
tions of any persons wishing to use the developed
model–it is important to indicate this feature as
essentially aninternal index of evaluation, cast in
terms of the model’s parametric space. Judgment
about the model is being made by reference to the
model’s intrinsic mechanisms, identified in effect by
the model’s parameters, which determine how the
input (causative) stimuli are transcribed into output
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responses. In principle, any such judgment ought
to reflect the generic properties of the model, irre-
spective of the current task to which it has been
assigned. In practice, however, it must inevitably
reflect the accumulating experience with the model,
and its earlier successful/unsuccessful performance,
up to–but not including–the present task (whatever
this may be).

Matching History

The second of the above questions is where the
vast majority of attention has been focused. It is
simply so self-evidently vital to our accepting the
model as trustworthy in some sense, as epitomized
in the ‘matching of history’, wherein the curves
of the model’s output responses can be seen–and
quantified in numerical terms–to pass amongst the
dots of the observed responses of the environmental
system under study.

In summary, what we seek as the outcome of
a matching of history–in fact, ideally the outcome
of the attempt to match at least a second, indepen-
dent history (the first having been used for calibra-
tion)–are the following: (a) a sequence, or set, of
residual errors of mismatch of small magnitude, with
a mean value approaching zero, and statistical prop-
erties closely approximating those of a white-noise
sequence; (b) errors (uncertainty) attaching to the
estimates of the model’s parameters, when derived
from calibration, whose variances are of small magni-
tude; and (c) no significant correlations among these
errors, i.e. small error covariances between the var-
ious model parameters. We need two independent
histories because, as Bohlin [5] has so aptly put it:
‘one good fit makes a data description; two good fits
makes a system description’. In this is embraced the
following agreed procedure, around which a stable
consensus has been gathered over decades. A first set
of past data is used to calibrate the model, i.e. to
derive values to be used for the complete set of the
model’s parameters, where these values are associ-
ated with a good, in principle, ‘best’, match of the
model with the data; the calibrated model, with no
further adjustments whatsoever, is then tested against
the second set of data, which it should match accept-
ably; and ‘acceptability’ as such has generally been
judged solely in terms of outcome (a) above (see
Cross-validation). When restricted in this way, it is
possible to see how the mere matching of history

can be described as essentially anexternal index of
evaluation, cast in the output space of the model.
Assessment strictly of the residual errors of (output)
mismatch calls for some comparison of data derived
from the model with data deduced from sources of
knowledge or experience utterly independent of the
specific model under scrutiny. Typically, appropriate
data of this sort will be those derived from empirical
observation, but they might be obtained from alterna-
tive candidate models. Since most complex models of
environmental systems will share similar pedigrees,
however, this necessarily undermines the struggle to
achieve maximal independence in the two sets of data
juxtaposed at the heart of the test.

The anatomy of the test itself has four parts:

1. the raw data, for example, the sequences of
model outputs, the observed (system) output
responses, and the differences between these two
sets of data;

2. summarizing properties of these data, such as
(statistical)distribution functions, the moments
of these distributions (e.g. their means), and
the sets of coefficients appearing in correlation
functions and regression relationships (relating
estimated to observed output data);

3. the decision, quintessentially of whether to accept
or reject the model as having matched history,
into the making of which may be funneled both
the raw data and their summarizing properties;
and

4. the decision statistics, used to guide consistent
application of the rules for accepting or reject-
ing the model, for example, the�2, Student’s
t, Kolmogorov–Smirnov, and Mann–Whitney–
Wilcoxon test statistics, among others.

One is not obliged to employ these formal meth-
ods of statistical hypothesis testing [13, 15]. The
person charged with evaluating the model may sim-
ply make up his/her own mind on the basis of
the data presented, without reaching for a formal-
ized decision rule. However, it is undoubtedly the
use of these methods that has dominated conven-
tional understanding of what constitutes testing of
whether history has been matched or not. In short,
when most of us think of model evaluation, a
statistical test of the deviations between observed
and computed output responses comes immediately
to mind.
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Such evaluation according to the residual errors
of mismatch alone–according to outcome (a) above,
that is–says nothing directly of the quality of the
materials of which the model has been constructed.
Indeed, such tests imply one can accept or reject the
model as a whole, without the subtlety of being able
to accept some and reject others of its component
parts. Outcomes (b) and (c), having to do with the
uncertainty attaching to the set of model parame-
ters, provide evidence of this, with the quality of the
constituent materials being roughly comparable with
the inverse of estimated parametric uncertainty. In
the ideal, over successive evaluations against inde-
pendent histories, one would want to see successive
reductions in the uncertainty attaching to the model’s
parameters. Thus, changes in the external index of
evaluation (matching of a variety of histories) would
be accompanied by accumulating evidence regarding
the internal index, which concerns itself with state-
ments about the quality of the model’s construction
(approval of its constituent hypotheses). Awareness
of these secondary kinds of outcomes, though once
not widespread, can be crucial.

Almost all models suffer from a lack of identi-
fiability; put simply, many combinations of values
for the model’s parameters may permit the model to
fit the observed data more or less equally well [1,
4]. In other words, history may have been matched,
but at the cost of substantial ambiguity in the param-
eterization of the model, as reflected in large error
covariances among the estimates of the parameters
[signalled through outcome (c)]. If just a singular,
supposedly ‘uniquely best’, set of values for the
model’s parameters has been obtained from cali-
bration, then these can be retained for the test of
the model against the second set of data, and the
latent ambiguity may never come to light. Yet it is
almost certainly there, and would manifest itself in
the form of the following conundrum: if several (per-
haps many) candidate parameterizations yield a good
calibration against the first history, which of these
should be called upon for the purposes of match-
ing the second history? If the presumption throughout
evaluation of the model is that only a single candi-
date parameterization of the model should exist, this
conundrum will not arise, and that has been precisely
the problem – for there shouldalways be enquiry into
the presence of ambiguity. Unfortunately, illuminat-
ing such ambiguity has been impeded by the absence
of good systematic procedures for computing error

variance–covariance properties for the parameters of
models ranging beyond the simpler regression-type
relationships [1].

To summarize, the behavior of the model may
approximate well that observed in respect of the real
thing, but there may be countless variations on the
theme of the way in which the model might be
constructed, some of which may not be ‘approved’
(when subjected to peer review).

Fulfilling a Designated Task

A model may be constructed for a variety of purposes,
for instance, to provide:

1. a succinctly encoded archive of contemporary
knowledge;

2. an instrument of prediction (in support of making
a decision or formulating a policy);

3. a device for communicating scientific notions to
a scientifically lay audience;

4. an exploratory vehicle for discovery of our igno-
rance.

No one would wish to tolerate extensive ambiguity in
a model intended to serve the first of these purposes.
Striving to overcome the seemingly unpalatable lack
of model identifiability could in this sense be a wor-
thy, if barely winnable, struggle. Yet a lack of identi-
fiability does not preclude a positive outcome of the
evaluation, especially from the pragmatic perspective
of the model fulfilling the second of the above pur-
poses. The supporting argument runs as follows (it
implies the use of ancillary analyses of sensitivity and
uncertainty [1, 16]). We presume a priori no uniquely
best parameterization of the model. The model is rec-
onciled with history, yielding possibly a multiplicity
of ‘acceptably good’ such parameterizations, hence
the intrinsic uncertainty. This multiplicity of parame-
terizations is accounted for in some way in generating
a variety of predicted consequences for each of the
policy options. Providing a clear preference for adopt-
ing one of the options can then be identified, and
this preference survives, say, all manner of analyses
of sensitivity of the predictions, their uncertainties,
and the rankings of the options to the evident uncer-
tainty and ambiguity in the calibrated model, one can
move forward with the preferred option, relatively
secure in the knowledge that this decision is robust
against uncertainty in the model [8]. The model will
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have served its purpose and will thereby have been
evaluated positively, in that sense.

Models, as Caswell observed long ago [7], are
objectsdesigned to fulfill clearly expressed tasks, just
as hammers, screwdrivers, and other tools have been
designed to serve identified or stated purposes. Some
of the tasks listed above are more purely what would
be called scientific (1 and 4), some obviously more
pragmatic (2 and 3). Conceiving therefore of a model
as a tool, and imagining how we might evaluate the
appropriateness (or otherwise) of that tool, specifi-
cally for serving pragmatic purposes, has begun to
broaden the concept of evaluation itself, beyond the
customary domains of peer review and matching of
history [2, 3]. Our perspective can be placed out-
side the traditional view of models as computerized
articulations of theory whose purpose, at bottom, is to
make predictions of a future state of nature, ultimately
falsifiable by subsequent observation when the time
comes. How would we, from the changed perspective,
evaluate whether a model was well- or ill-designed as
a communications device, for example? For the time
being we have only started to ask such questions.

Open Questions

Like the subject of pollutant dispersion, wherein unre-
solved intricacies are continually being revealed, dis-
cussion of the subject of evaluating models (formerly
referred to as validation) seems destined to continue
(e.g. [18]). For one thing, the task is becoming no
easier, since it must follow our apparently boundless
ambition for the development and application of mod-
els of the behavior of environmental systems. Ever
larger models will be constructed. They will be ever
more dependent upon multidisciplinary knowledge
bases, extremely difficult to scrutinize, and doubt-
less strongly immune to empirical refutation. We can
already sense a shift away from the rigour of evaluat-
ing very high-order models (VHOMs), for instance in
oceanography, where application of the algorithms
of data assimilation is rising to the fore [9]. In other
words, the outlook is coalescing around the view that
the relatively sparse data can but be assimilated into
the current theory, not employed to root out ruth-
lessly its inadequacies. We do indeed have a problem
with evaluation in the sense of matching history, and
the situation may be little better in respect of peer
review, simply because there will be few peers for
such VHOMs having no conflict of interest. It will

not suffice to be cast into a state of mental paralysis
on the issue of their evaluation, but neither will it be
sufficient to argue that their quality has been assured
simply by virtue of every conceivable constituent
hypothesis having been incorporated a priori. There
is scope for much primary thought to be invested in
the topic of evaluating VHOMs in particular.

Ten years ago, had one been asked, validation–as
it was referred to then–would have been defined as
the assessment of a model’s predictive performance
against a second set of (independent) data given
parameter values identified from a first set of data.
Today we are armed with a wider palette of metaphors
and analogs (the legal process, quality assurance in
the design of tools, and quality assurance in con-
trolling procedures in an analytical laboratory) with
which to fashion a broader protocol for the conduct
of evaluating a model.
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