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1 Introduction

This method is intended to assist in characterizing uncertainties in emissions data
for the Mileubalans and to identify critical issues related to uncertainty. The method
assesses both quantitative and qualitative dimensions of uncertainty. Quantitative un-
certainties are expressed by assigning probability distributions to the main emissions
parameters and propagating those uncertainties via Monte Carlo simulations. Qual-
itative dimensions of uncertainty are expressed by use of a pedigree method, which
provides rankings on a variety of qualitative attributes of emissions parameters.

The general features of the method are described below as a series of steps. The
first steps attempt to make explicit the structure of the system in which the emissions
data is collected by disaggregating the data. A series of steps follow that which are
designed to identify the main assumptions employed and key sources of error. These
steps help to calibrate the analyst in providing qualitative and quantitative uncer-
tainty estimates in sections 9 and 10. The final sections cover the use of sensitivity
analyses and communication of results. Much of the data generated with the method
is organized via a Monte Carlo / Pedigree spreadsheet, which is implemented with
the ‘QRISK’ software package.

Note that the method is designed to provide a fairly rapid overview and diagnosis
of uncertainty so that it can be adapated and used as a standard in a range of emis-
sions studies. It should help structure uncertainty analysis on sets of data where this
has not yet been done, or provide a convenient form to represent uncertainties where
more detailed analysis on uncertainties has already been completed. The method also
adds features that are not normally included in conventional uncertainty analyses. It
is intended to convey the most salient uncertainties, and to provide guidance on where
to put effort to improve the quality of emissions estimates. The method encourages a
consistent characterization of uncertainty, avoiding the use of more precision than is
justified by available knowledge. Finally, the method does not attempt to be exhaus-
tive in characterizing all possible uncertainties. In particular, it does not provide a
lot of focus on ‘structural’ uncertainties, which are assumed to play a more modest
role in the assessment of emissions data than they do in other domains.

2 Problem Context

The emissions data in the Mileubalans is sometimes geared to specific national leg-
islation. For example, regulations may specify that emissions should not exceed a
certain level or that the trend in emissions with time should be reduced. In this re-
gard it is pertinent to ask whether the right quantities are being monitored, whether
the emissions can be determined with sufficient accuracy to match the requirements
of the standards, and whether the accuracy is sufficient to permit reliable assessment



of trends.

e Describe the emissions data being assessed. Include an assessment of the error
bars in past emissions estimates.

o Identify any national standards that pertain to the emissions data and outline
any requirements set explicitly or implicitly for the accuracy of the data. When
explicit requirements are not set, try to determine what level of accuracy in the
data would be needed to meet the goals set forth in the regulations.

e Make an assessment of the match between the properties of the data and the
requirements of the regulations, identifying problems, challenges, and goals for
the emissions monitoring analysis.

3 Identification and classification

The first step in the analysis is to identify the relevant variables that are used in
making an assessment of emissions. Identify the set of variables involved in the
emissions estimate and sort them as to whether they are input variables (which must
be measured or estimated in some way) or derived variables (which are computed
from input variables).

4 Disassembly and Aggregation

The next step is to identify relationships between variables and the major assumptions
underlying the representation of those relationships. This step reveals the structure
of the system of study and it will usually be necessary to provide more detail on
the processes and components underlying each of the input variables. The goal of
this step is to reveal where all of the input data comes from and what assumptions
or aggregations underly it. By disaggregating the input variables in this way the
factors underlying the qualitative and quantitative assessments of uncertainty are
made explicit. After disaggregation one may choose to add new input variables or
derived variables to the set already identified if it helps in structuring the problem
or identifying implicit assumptions. Some level of aggegation is usually maintained
however in order to keep the number of variables at a manageable level. The steps
involved in this process are as follows:

Diagram. Start with the list of variables identified in section 3. Construct an ‘influ-
ence diagram’ or ‘tree diagram’ showing how the variables relate to one another



in calculating the final emissions estimate. Disaggregate variables into compo-
nents where appropriate. Identify the sources of estimate or measurement for
each group of variables and note key assumptions on the diagram.

Aggregate. Now you will probably want to reaggregate the data back to a more
manageable level by drawing boundaries on the influence diagram at your de-
sired level of aggregation. Some guidelines for this exercise are given below.

Select. Identify the final set of input variables at your chosen level of aggregation.
These are the variables for which you will construct pdf’s and pedigrees in
the following sections. Enter the list of variables into the @QRISK spreadsheet
(table 1).

Document. Make a separate list of the main assumptions underlying the list of
aggregate variables that you have produced.

The choice of level of aggregation in the second step above entails a degree of
subjective judgement. While the choice of aggregation level is best done by the
analyst, some elementary guidelines may nevertheless be useful in this regard:

Realism. The level of aggregation should not be so coarse as to overly constrain
your view of the complexity of the system.

Tractability. The level of aggregation should not be so fine as to be cognitively
unmanageable or intractable.

Data availability. Try to keep the level of aggregation such that you have data on
the resolved variables at the resolved scales.

Physical meaning. The level of aggregation should yield variables that have some
physical meaning in your understanding of the problem.

Physical relationship. The level of aggregation should yield variables whose phys-
ical relationships accord with your views of the underlying processes.

Parsimony. If your influence diagram still has more connections after aggregating
than the Tokyo subway map it is probably too complicated. One reason for this
is described below.

The error in a model typically decreases with the complexity of the model (as
measured by the number of variables for example), but the error in the data required
typically increases as complexity increases (ERL, 1985). This tradeoff yields an opti-
mum in reduction of total error which is at an intermediate level of model complexity.
Thus, it does not necessarily help to work with the most complex imagineable form
of your emissions ‘model’.



variable lower | upper | mode | units | proxy | empirical | method | validation | grade
name bound | bound

inp_var_1 0.8 1.8 1.6 | kton 3 3 2 2 0.6
inp_var_2 8.0 10.0 9.4 | kton 4 2 3 3 0.8
inp_var_3 5.0 5.5 5.1 | kton 2 3 4 1 0.6
inp_var 4 20 40 28 | % 3 1 3 0 0.4
inp_var_5 15 25 20 | % 2 3 3 3 0.7
der_var_1
der_var_2
der_var_3
der_var_4

Table 1: Monte Carlo and Pedigree spreadsheet. The variables and values given in
the table are for example only. The variables with the prefix “inp” must have values
supplied for the pdf and pedigree matrix. The values of derived variables (“der”) are
calculated by the spreadsheet program. The value of the final emissions estimate is
represented by “der_var 4” here. The pedigree scores for this variable are used to
generate the “kite plot” (figure 3).

5 Covariance

The set of variables entered into table 1 will not usually all be independent. Some
variables may be related through common processes and may ‘covary’ with one an-
other as a result. This is important for the Monte Carlo uncertainty analysis, since
if we sample one variable at one extreme of its distribution, this may require that we
sample other variables from a specific part of their distribution in order to preserve the
relationship between the variables. That is, we are not free to sample independently
when the variables are not independent.

First, examine the datasets used and identify potential sources of covariance. On
that basis, identify any pairings of variables from your list in table 1 that you think
are particularly likely to be dependent on one another. Note that there is a trade-
off here in that if you identify too few pairings you will possibly be making too
generous an assumption about the independence of variables. On the other hand, if
you identify all possible pairings, the number of combinations will usually be too large
for practical manipulation and assessment. Thus, you should attempt to identify the
dependent pairings that are most likely to be critical in their interaction. Unless you
have opportunity to assess this systematically in a large data set you will probably
have to make this judgement subjectively. Bear in mind that this is an additional
source of uncertainty.

Once you have chosen pairings of dependent variables, make an estimate of the
correlations between them and enter these into the appropriate places in the spread-
sheet (table 1 in the entry for the pdf). Note that you can always go back and redo
the Monte Carlo analyses later on with different values for the correlations (or enter
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more/fewer correlations between variables) to assess the effect this has on the final
emissions results. In fact, it is a good idea to do this to get some indication of the
importance of the assumptions made in assessing the dependence structure among
your chosen variables. To be sure however, these additional runs should be conducted
as sensitivity analyses, not as a means to ‘tune’ the results to fit expectations! If the
results are sensitive to the covariance structure employed, be sure to note that in
communicating results (section 14).

6 Assessment of assumptions

For each of the assumptions identified in the disaggregation step (section 4) and
covariance step (section 5) above, provide a brief summary statement on the validity
and robustness of the assumption. Try to project what the possible consequences for
the final emissions results might be in cases where the assumption is (hypothetically)
found to be invalid. These responses can be completed in table 2.

Assumption Validity and Robustness Consequences
What is the domain of validity
of the assumption?

Under what conditions is it

robust or not robust?

Describe the possible consequences
for (hypothetical) cases where the
assumption is found to be invalid

Describe the assumption

paint sales and VOC could be
out of sync for some period if
big change in buying patterns,
but likely corrected over time

Assumes all VOC released from
paint and the unused amount of
paint each year is the same.
Reasonable assumption unless

a big shift in use to different
paint types changes stock
levels.

paint sales are a
good surrogate for
VOC emissions

overall VOC content
in imported paint
same as for the NL.

valid so long as imports from
countries with similar
production standards

if imports favour countries with
higher VOC content then
undercounting VOC amount.

imported VOC split
across sectors as
per NL

valid so long as imports not
favour specific domestic
sectors

if imports going preferentially
into high VOC sector (e.g. auto)
then undercounting VOC. this
seems to be the case.

non-respondents and
non-members have
similar sales
patterns as similar
size responding
member firms

valid so long as non-members
engaged in similar operations
as members.

could lead to under or over
estimates depending on non-member
activities. worst case would be

an unknown big producer among
non-members, which seems unlikely

Table 2: Assessment of Assumptions.




7 Sources of error

The description of sources of error may have some overlap with the assessment of
assumptions. However, there may be sources of error that do not relate specifically
to the assumptions described above. The description of error sources will depend on
what sources and methods have been used to generate the emissions data. Typical
sources of emissions data include instrumental observations, surveys, and models.
Some of the errors characteristic of each type of source are as follows:

Instrumental data. There will be some random and systematic errors associated
with calibration, operation, and maintainance of instruments. Sources of sys-
tematic error include drift of instrument response characteristics with time, and
changes in the type or location of the instruments used. Missing data may also
be a problem, as well as artefacts caused by changes in the immediate environ-
ment of the instrument (e.g. urbanization).

Survey data. Sources of error in survey data include definitional inconsistency
across respondents, or changes in definitions of quantities through time, miscate-
gorization of data, misreporting due to confusion over the units used, deliberate
misreporting because of incentives to misreport, miscoding of responses, and
non-response.

Model data. In some cases, data is generated from models, or may have been aug-
mented in some manner via use of models. Some sources of error related to use
of models include the lack of correspondence between the model and the real
world, discrepancies in temporal or spatial scale between modelled variables and
those of interest, biases toward more or less extreme behaviour in the statis-
tics of the modelled variable, omission of important processes, and inconsistent
definitions between model variables and those of interest.

Identify the type of data used to characterize emissions and generate a list of the
main sources of error. For each source of error you need provide only a qualitative
description. However, you should indicate whether the error is primarily random
or systematic in nature. If systematic, indicate the likely direction of bias. These
responses can be provided in table 3.

8 Identification of expertise

In preparation for making assessments of the uncertainties, the domains of expertise
and experts pertinent to the different input variables must be identified. Where
feasible, interviews may need to be conducted with outside experts in order to make
some of the necessary judgements on the uncertainty of input variables. When expert
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Name of error

e.g. instrument

drift

Qualitative Description

A brief description of the
characteristics of the error

Bias

classify the error as random or
systematic

if systematic, indicate the likely
direction of bias

definitional different definitions of paint systematic, leading to some
inconsistency at CBS and VVVF. VVVF estimate | overcounting and some

to correct for overlap. undercounting if not corrected
definitional boundary between paint and raw unknown
vagueness materials not always clear

paint dynamics

CBS list from 1950s. now have
new paints on market.
sometimes not reported as paint

systematic, leading to
underestimate

misreporting typically using kg instead of overestimate by factor 1000, but

units confusion tonnes usually caught and corrected

deliberate conceal true level of imports unknown

misreporting or sales to reduce tax burden

miscoding survey | mistakes in survey data from random and typically caught by

responses CBS or VVVF cross-checking with past responses

non-response sales must be estimated for random

to surveys non-respondents

not counting firms with less than 500K in systematic, leading to

small firms annual imports not counted by underestimate of imports, but
CBS likely small because market

dominated by larger firms
unofficial cross-border paint purchases. systematic, leading to some
imports paint cheaper in DE than NL. underestimate

code errors

errors in computer code used
to track imports at CBS and
sales at VVVEF.

could lead to systematic errors,
but the direction of such errors
is unknown

firm dynamics

firms bought, sold, merge,

split. financial reconciliations

in such cases may span months and
short term CBS data may
undercount or doublecount firms

as a result. usually corrected

in longer term CBS data.

random

imported VOC
allocated to
sectors per NL

described under ‘assumptions’

possible underestimate due to
suspected underallocation to
high VOC auto sector

imported paint
same VOC as NL

described under ‘assumptions’

bias small if importers have
similar standards to NL
reasonable as major imports are
from EU.

Table 3: Sources of error.
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interviews are conducted to complete the qualitative and quantitative uncertainty
assessments in sections 9 and 10, some care must be taken in ‘debiasing’ the experts.
Some of the common pitfalls in expert elicitation are as follows:

Over confidence. Experts tend to over-estimate their ability to make quantitative
judgements. This is difficult for an individual to guard against; but a general
awareness of the tendency can be important.

Anchoring. Assessments are often unduly weighted toward the conventional value
or first value given in making the assessment.

Availability. This bias refers to the tendency to give too much weight to readily
available data or recent experience (which may not be representative of the
required data) in making assessments.

Representativeness. This is the tendency to place more confidence in a single piece
of information that is considered representative of a process than in a larger
body of more generalized information.

Satisficing. This refers to the tendency to search through a limited number of solu-
tion options and to pick from among them. Comprehensiveness is sacrificed for
expediency in this case.

Interests. Experts may have political, personal, or other reasons to favour one out-
come for the analysis over another. Awareness of this problem can be increased
by identifying sources of motivation and interests.

Unstated assumptions. A subjects responses are typically conditional on various
unstated assumptions. The affect of these assumptions is often to constrain the
degree of uncertainty reflected in the resulting probability distribution. Stating
assumptions explicitly can help reflect more of a subject’s total uncertainty.

Coherence. Events are considered more likely when many scenarios can be created
that lead to the event, or if some scenarios are particularly coherent. Conversely,
events are considered unlikely when scenarios can not be imagined. Thus, prob-
abilities are assigned more on the basis of ones ability to tell coherent stories
than on the basis of intrinsic probability of occurence.

A fuller description of sources of cognitive bias in expert and lay elicitation processes
is available in Dawes (1988). For more detailed instructions on conducting expert
elicitations, see Frey (1998).
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9 Qualitative assessment

For each of the input variables complete the assessment of pedigree scores. The four
dimensions of the emissions monitoring pedigree are given in table 4. The pedigree
scores should be entered into the appropriate columns in the spreadsheet (table 1).
Scores are entered on a scale from 0 to 4 according to the guidelines given in table 4.

The four pedigree criteria are as follows:

Proxy. Sometimes it is not possible to obtain direct measurements of the emissions
quantities reported in the Mileubalans and so some form of proxy measure
is used. The proxy pedigree element refers to how good or close a measure
the quantity which we measure is to the actual quantity about which we seek
information. An exact measure of the quantity would score four. If the measured
quantity is not clearly related to the desired quantity the score would be zero.

Empirical. Empirical quality typically refers to the degree to which direct observa-
tions are used to estimate the variable. When good quality observational data
are used the pedigree score will be high. Sometimes directly observed data are
not available and the variable is measured by survey data, generated by models,
or using simple rules. Data that is determined by such indirect methods is lower
in empirical content and will generally score lower than directly observed data.

Method. Some method will be used to collect, check, and revise the data used
for making emissions estimates. Methodological quality refers to the norms for
methodological rigour in this process applied by peers in the relevant disciplines.
Well established and respected methods for measuring and processing the data
would score high on this metric, while untested or unreliable methods would
tend to score lower.

Validation. This metric refers to the degree to which one has been able to cross-
check the data against independent sources. When the data has been compared
with appropriate sets of independent data to assess its reliability it will score
high on this metric. In many cases, independent data for the same variable
over the same time period are not available and other datasets must be used
for validation. This may require a compromise in the length or overlap of
the datasets, or may require use of a related, but different, proxy variable, or
perhaps use of data that has been aggregated on different scales. The more
indirect or incomplete the validation, the lower it will score on this metric.
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| Score | Proxy

| Empirical

| Method

Validation

An exact measure
of the desired

Controlled
experiments and

Best available
practice in

Compared with
independent mmts

experiments, small
sample direct mmts

est. discipline

Best available
practice in
immature discipline

quantity large sample well established of the same variable
direct mmts discipline over long domain

Good fit or Historical /field Reliable method Compared with

measure data, uncontrolled common within independent mmts

of closely related
variable over shorter
period

Well correlated
but not measuring
the same thing

Modeled/derived
data
Indirect mmts

Acceptable
method but
limited consensus
on reliability

Measurements not
independent
proxy variable
limited domain

Weak correlation
but commonalities

Educated guesses
indirect approx.

Preliminary methods
unknown reliability

Weak and very
indirect validation

in measure rule of thumb est.

0 Not correlated crude speculation No discernible No validation
and not clearly rigour performed
related

Table 4: Pedigree matrix. The pedigree matrix is based on Funtowicz and Ravetz,
1990 and adapted from Ellis et al., 2000.

10 Quantitative assessment

For each of the input variables in the spreadsheet a pdf expressing the uncertainty in
true value of the variable must be assessed. The steps involved in assessing the pdf’s
are as follows:

Structuring. Choose a unit and scale that is familiar to the respondent in order to
characterize the selected variable.

Extremes. State the extreme minimum and maximum plausible values for the vari-
able.

Extreme assessment. Try to envision ways or situations in which the extremes
might be broader than you have stated. Describe such a situation if you can
think of one, and revise the extreme values accordingly in that event. Enter the
extreme values into the appropriate columns in the spreadsheet (table 1).

Assessment of knowledge level and selection of distribution. Before speci-
fying more detailed information about the distribution it is important that
this be done in a way that is consistent with your level of knowledge about the
variable. In particular, we seek to avoid specifying more about the distribution

13



shape than is actually known. The following heuristic is used to guide selection
of distribution type: If the pedigree grade for the final emissions estimate is
less than 0.3, use a uniform distribution. If it is between 0.3 and 0.7, use a
triangular distribution. If it is greater than 0.7, use a normal distribution or
other distribution as appropriate.

Specification of distribution. If you selected a uniform distribution you do not
need to specify any further values. If you selected a triangular distribution,
specify the mode. If you choose another distribution (e.g. normal), you now
need to specify what that distribution is, along with values for the 5th, 50th,
and 95th percentile values. Refer to the ‘@QRISK’ menu for a list of distributions.
Briefly justify your choice of distribution if other than uniform or triangular.

Data entry. Enter the results obtained for the distributions for each variable into
the appropriate columns in the spreadsheet (table 1).

Check. Now use the spreadsheet software to plot the distribution. If the resulting
distribution does not conform to your expectations, revise it until it represents
your subjective judgement satisfactorily.

11 Uncaptured assumptions

At this point you may feel that there are still some dimensions of uncertainty in
the emissions estimation process that have not been captured in the above method.
Describe any such issues here. If it is possible to revise the above to include the
effects of such issues (by adding additional variables for example), please do so. If
that is not possible, state what effects you think these issues have on the net emissions
assessment.

12 Calculation of Monte Carlo and Pedigree re-
sults

Having entered all of the appropriate data into the Monte Carlo / Pedigree spread-
sheet, run the spreadsheet to produce distributions of the derived variables. Refer
to the QRISK report. This summarizes the sensitivity results and provides statistics
and distributions for each of the variables. Check the results for general consistency
with your expectations to make sure that they seem plausible.

The next step is to combine the quantitative sensitivity results and qualitative
pedigree results. This is done by use of the NUSAP diagnostic diagram. Generate
a NUSAP diagnostic diagram from the spreadsheet program. An example NUSAP
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diagnostic diagram is shown in figure 1. Variables that score high on spread and low
on strength lie in the top right corner of the diagram (e.g. VOC percent in imported
paint on the example in figure 1). Such variables are important contributors to the
emissions estimate but are probably not very reliable. Identify the most critical
variables in this regard and list them. At this stage you may wish to go back and
reassess the assumptions underlying these variables, along with the distributions used
to characterize them. Redo the Monte Carlo analysis if necessary. You may also wish
to carry out sets of sensitivity runs for the covariance structure among variables
discussed in section 5.

NUSAP Diagnostic Diagram
+YVO(% imp.paint

01

+Thin % Ind
§
s + NS Decor
E Imp. Paint * NSInd + Oerlap VVVFE/CBS imp
g ¢ * Inmjp. Below threshold

001 ATC AT

3 INS IO Y
*NB Car

+ Thin.% DIY-rest
Thin.% Car

NS Ship + Gap VVVERNS

Th.% decor

1 08 05 04 02 0
Strenght

oo

Figure 1: Example NUSAP diagnostic diagram for a case on VOC emissions from
paint. The vertical axis is the log of relative contribution to variance in the final
output variable as determined from the Monte Carlo sensitivity runs. The horizontal
axis is the pedigree grade plotted from 1 to 0 for each variable.

As a final sensitivity experiment, redo the monte carlo analysis with all the pdfs
converted to uniform distributions and compare the results with the original. The
difference in spread provides some indication of the reduction in uncertainty that is
gained by using more specific information in specifying the distributions.
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13 Multiple Experts

In the case where multiple experts have completed assessments for pdfs in the spread-
sheet the issue arises of how to combine them in calculating and presenting results.
This is a difficult issue and there is no single best way to do this in all cases. The
difficulty arises in part because different experts may have different (valid) ways to
view the problem and it is not clear that one can then average or weight their distri-
butions in a meaningful way. We recommend running the Monte Carlo simulations
separately for all the experts and comparing the set of resulting pdfs.

If there is a large spread across experts then this will need to be noted in com-
municating results. A conservative choice in this case would be to select the broadest
distribution obtained from among the different experts and use that — unless there
are good reasons to justify rejecting that distribution. One would then note in pre-
senting results that there is expert disagreement, but that the choice of distribution
is indicative of the upper range of spread from among the disparate experts.

If there is a relatively small spread among the resulting expert distributions then
the selection of distribution is less critical. In this case one can simply select a typical
distribution and note that it is indeed typical of the different expert results.

14 Communication of results

The resulting emissions estimate is given by a pdf from the Monte Carlo spread-
sheet run. To simplify the pdf (and to make the level of precision conveyed by it
more consistent with available knowledge) it can be converted to a whisker plot for
communication with users, which summarizes the distribution in the form shown in
figure 2. This simplified representation shows only the extremes and mode of the

distribution.

Figure 2: Whisker plot of emissions pdf.

The pedigree results can be displayed as a four corner ‘kite’ plot (figure 3). The
corners of the outer box correspond to a pedigree score of four for each pedigree
criterion and the center of the box corresponds to scores of zero. The inner box
marks the actual scores obtained on each criterion.

The whisker plot provides a representation of the probability distribution of the
final emission result. It represents the quantitative uncertainty of the result. The
kite diagram summarizes information on qualitative dimensions of uncertainty in the
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Validation Method

Proxy Empirical

Figure 3: Kite diagram of emissions pedigree.

result. The colors of the kite diagram correspond metaphorically to those of a traffic
light. If strength is high in each of the pedigree elements the box will be largely
green, indicating that the final result is well underpinned. If strength is lower in some
pedigree elements the box will then be redder in color, indicating that the result is not
so well underpinned. The whisker plot and kite diagram thus provide complementary
information on the uncertainty and quality of the result. The whisker plot expresses
uncertainty in the emissions estimate, but that respresentation of uncertainty is itself
uncertain. The kite diagram provides one estimate of the reliability of the whisker
plot.

Even though you have provided a measure of uncertainty (whisker plot) and a
measure of the reliability of the uncertainty estimate (kite plot), there will still be
some uncertainties that have not been captured in the whisker and kite plots. These
may relate to uncertainties that you know about and identified in section 11, but
which you were unable to represent in the formats utilized here. There will also be
some uncertainties that simply haven’t been identified yet (ignorance). The latter may
manifest themselves as surprises. For those uncertainties that have been identified,
but not well represented in the above, provide a short written description of the
uncertainties and their possible influence on your final estimate of emissions. This
may entail simply repeating some of the information supplied in section 11, but it is
important to provide this information to users also.

At this point you may wish to modify the whisker plot expressing uncertainty on
the emission result on the basis of the uncaptured assumptions outlined. Further,
your sensitivity analyses on the covariance structure may indicate that the Monte-
Carlo pdf of emissions does not sufficiently capture uncertainty related to covariance
structure. If you think you can modify the whisker plot to take these additional
uncertainties into account, do so. If not, try to provide a qualitative description of
their potential impact.

17



Finally, bear in mind that the whisker plot distribution for net emissions may or
may not encompass the unknown true value of emissions. The distribution is only as
robust as the data, assumptions, model, and pedigree underlying it.
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